# 2,3-Diferrocenylcyclopropenone in the reaction with organomagnesium compounds

E. I. Klimova, \*\* T. Klimova, \*\* L. Ruiz Ramirez, \*\* J. M. Mendez Stivalet, \*\*
S. Hernandez Ortega, \*\* and M. Martínez García\*\*

<sup>a</sup>Department of Chemistry, National Autonomous University of Mexico,
Mexico, C. P. 04510, Mexico.\*
Fax: +52 (55) 5622 5371. E-mail: klimova@servidor.unam.mx

<sup>b</sup>Institute of Chemistry, National Autonomous University of Mexico,
Mexico, C. P. 04510, Mexico.\*\*
Fax: +52 (55) 5616 2203

The reactions of 2,3-diferrocenylcyclopropenone with ethyl- and benzylmagnesium chlorides afford 3,3-diethyl- and 3,3-dibenzyl-1,2-diferrocenylcyclopropenes along with products of nucleophilic opening of the three-membered ring:  $\alpha,\beta$ -unsaturated and saturated ketones (*cis*-1,2-diferrocenylpent-1-en-3-one and *cis*-1,2-diferrocenyl-4-phenylbut-1-en-3-one, 4,5-diferrocenylheptan-3-one, and 3,4-diferrocenyl-1,5-diphenylpentan-2-one). The products of insertion of intermediate diferrocenyl(vinyl)carbene at one of the  $\sigma$ -bonds of the starting 2,3-diferrocenylcyclopropenone were also isolated: 4-(2-oxo-1-ferrocenylbutyl)- and 4-(2-oxo-3-phenyl-1-ferrocenylpropyl)-2,3,4-triferrocenylcyclobutenones. 3,3-Dibenzyl-1,2-diferrocenylcyclopropene and one of the diastereomers of 4,5-diferrocenylheptan-3-one were studied by X-ray diffraction analysis.

**Key words**: ferrocene, 2,3-diferrocenylcyclopropenone, 1,2-diferrocenylcyclopropenes, diferrocenyl(vinyl)carbenes, 2,3,4-triferrocenylcyclobutenones.

Compounds of the cyclopropenone series are of interest due to their pseudo-aromatic nature  $^{1,2}$  and high strain energy, planarity and kinetic lability  $^{1-3}$  of the cyclopropenone structure, and potential practical applications. 2,3-Diphenylcyclopropenone was the first cyclopropenone derivative described in the literature. Then many works described syntheses and studies of the reactivity of aryl- and alkyl-substituted cyclopropenones and considered the use of these compounds in organic synthesis.  $^{5-10}$ 

Ferrocenyl-substituted analogs of arylcyclopropenones remain unstudied up to date, although 2,3-diferrocenyl-cyclopropenone (1) has been isolated for the first time as early as in 1975 by the alkylation of ferrocene with tetrachlorocyclopropene at low temperature in the presence of AlCl<sub>3</sub> in  $\sim$ 7% yield. <sup>11</sup> The main reaction product was the 1,2,3-triferrocenylcyclopropenylium salt. At the same time, the influence of ferrocenyl fragments on regio-

smaller amount of AlCl<sub>3</sub> (Scheme 1).

and stereochemistry of transformations of ferrocenylcyclo-

propenones is of doubtless interest. The latter, if acces-

sible, could be the starting substances for syntheses of

many useful compounds of the ferrocene series, which

combine olefinic fragments with functional groups in the

cyclopropenone 1 (to 90%) by the alkylation of ferrocene

with tetrachlorocyclopropene at 20 °C in CH<sub>2</sub>Cl<sub>2</sub> using a

We succeeded in substantial increasing the yield of

 $Fc = C_5H_5FeC_5H_4$ —

same molecule.

In this work, we studied the reactions of cyclopropenone 1 with organomagnesium compounds, *viz.*, ethyl- and benzylmagnesium chlorides (EtMgCl and BnMgCl, respectively).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 798—805, April, 2004.

<sup>\*</sup> Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, C. P. 04510, México D. F., México.

<sup>\*\*</sup> Instituto de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, C. P. 04510, México D. F., México.

We found that cyclopropenone 1 reacts with excess EtMgCl to yield a mixture of several products, the main of which being 1,2-diferrocenyl-3,3-diethylcyclopropene (2), 1,2-diferrocenylpent-1-en-3-one (3), 4,5-diferrocenylheptan-3-one (4), and 4-(2-oxo-1-ferrocenylbutyl)-2,3,4-triferrocenylcyclobutenone (5) (Scheme 2).

## Scheme 2

The reaction with BnMgCl occurs similarly to form cyclopropene  $\bf 6$ ,  $\alpha,\beta$ -unsaturated ketone  $\bf 7$ , saturated ketone  $\bf 8$ , and cyclobutenone  $\bf 9$ . An unexpected reaction product is 2-hydroxy-3-oxo-1,2-diferrocenyl-1,2,3,4-tetrahydronaphthalene ( $\bf 10$ ) (Scheme 3).

#### Scheme 3

The structures of compounds **2**—**10** were established by the data of <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy (see Experimental).

(10%)

**Table 1.** Bond lengths (*d*) and bond ( $\omega$ ) and torsion ( $\alpha$ ) angles in molecules **4a** and **6** 

| Bond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | d/Å       |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|--|--|
| Compound 4a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |           |  |  |
| C(11)-C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | 1.468(7)  |  |  |
| C(21)-C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | 1.567(5)  |  |  |
| C(12)-C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | 1.428(8)  |  |  |
| C(1)-C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 1.570(7)  |  |  |
| C(21)-C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | 1.539(8)  |  |  |
| C(22)-C(25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | 1.485(8)  |  |  |
| O(1)-C(25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 1.191(6)  |  |  |
| C(25)-C(26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | 1.469(7)  |  |  |
| , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Compound         | , ,       |  |  |
| C(11)-C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                | 1.286(3)  |  |  |
| C(11)-C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | 1.499(3)  |  |  |
| C(12)-C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | 1.493(3)  |  |  |
| C(1)-C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 1.444(3)  |  |  |
| C(13)-C(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | 1.444(3)  |  |  |
| C(12)-C(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | 1.532(3)  |  |  |
| C(12) - C(25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | 1.534(3)  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |  |  |
| Bond angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | ω/deg     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Compound         |           |  |  |
| C(11)-C(22)-C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | 112.4(5)  |  |  |
| C(25)-C(22)-C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\mathbb{C}(21)$ | 110.5(5)  |  |  |
| C(22)—C(21)—C(23)—C(21)—C(23)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)—C(21)— | $\mathbb{C}(1)$  | 107.4(4)  |  |  |
| C(23)-C(21)-C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C(22)            | 109.1(5)  |  |  |
| O(1)-C(25)-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | 120.4(5)  |  |  |
| O(1)-C(25)-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | 120.9(7)  |  |  |
| C(11)-C(22)-C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | 112.3(4)  |  |  |
| C(1)-C(21)-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (23)             | 112.2(5)  |  |  |
| Compound 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |           |  |  |
| C(13)-C(11)-C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | 64.28(19) |  |  |
| C(13)—C(12)—C(11)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)—C(13)— | C(11)            | 50.90(15) |  |  |
| C(11)-C(13)-C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C(12)            | 64.82(19) |  |  |
| C(53)-C(52)-C(52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C(51)            | 50.90(15) |  |  |
| C(52)-C(53)-C(53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C(51)            | 64.14(15) |  |  |
| C(53)-C(51)-C(51)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C(52)            | 64.94(19) |  |  |
| C(24)—C(12)—C(24)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)—C(12)— | C(11)            | 120.2(2)  |  |  |
| C(24)-C(12)-C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C(25)            | 111.4(2)  |  |  |
| C(13)-C(12)-C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\mathbb{C}(25)$ | 120.8(2)  |  |  |
| C(64)-C(52)-C(52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C(65)            | 111.7(2)  |  |  |
| Torsion angle $\alpha/\deg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | α/deg     |  |  |
| Compound 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |           |  |  |
| C(11)-C(12)-C(24)-C(26) -95.2(3)<br>C(51)-C(52)-C(65)-C(66) 25.9(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |           |  |  |
| C(51) - C(52) - C(51)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(65) - C(66)    | 25.9(4)   |  |  |
| C(31) = C(32) = C(11) = C(12) = C(11) = C(11   | C(35) = C(30)    | -33.9(4)  |  |  |
| C(11) = C(12) = C(11) = C(11   |                  |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(07) -C(72)     | 155.7(2)  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |  |  |

The spatial configuration of one of cyclopropenes, viz., 3,3-dibenzyl-1,2-diferrocenylcyclopropene **6**, was confirmed by spectral data and X-ray diffraction analysis of single crystals obtained by crystallization from hexane (Tables 1 and 2). The general view of molecule **6** is shown in Fig. 1, a. The three-membered ring in structure **6** is an isosceles triangle. The C=C bond length (d = 1.286(3) Å)

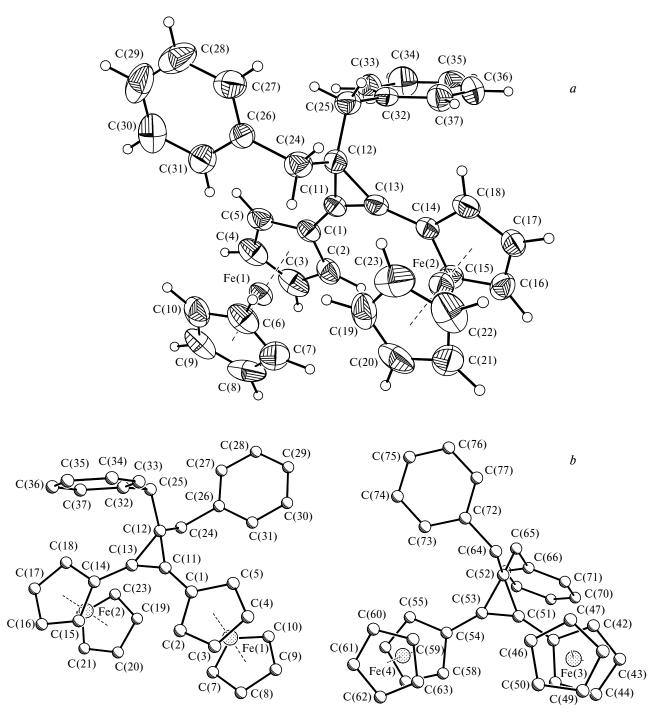



Fig. 1. General view of a 3,3-dibenzyl-1,2-differrocenylcyclopropene (6) molecule (a) and molecular structures of two independent molecules (b).

and the value of the  $\omega$  acute angle at C(12) (50.90(15)°) differ slightly from the corresponding values for 3-aryl-3-ferrocenylcyclopropenes. <sup>12,13</sup> Substituted cyclopentadienyl rings of the ferrocene fragments lie in the plane of the small cycle. The Fe—C bond lengths and geometry of the ferrocene sandwiches are the same as those in related compounds. <sup>12,13</sup> The unit cell of the crystal structure of

compound **6** contains two independent differrocenyl-cyclopropene molecules, whose geometric parameters are the same, except for rotational angles of the phenyl rings about the  $C_{sp^3}$ — $C_{sp^3}$  ordinary bonds (see torsion angles in Table 1 and Fig. 1, b).

As follows from the data of <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy, compounds 3 and 7 are formed as one geomet-

Table 2. Crystallographic data and X-ray diffraction parameters for compounds 4a and 6

| Parameter                                                         | 4a                                       | 6                                        |
|-------------------------------------------------------------------|------------------------------------------|------------------------------------------|
| Molecular formula                                                 | $C_{27}H_{30}Fe_2O$                      | $C_{37}H_{32}Fe_2$                       |
| Molecular weight/g mol <sup>-1</sup>                              | 482.21                                   | 588.33                                   |
| Temperature/K                                                     | 291(2)                                   | 291(2)                                   |
| Crystal system                                                    | Monoclinic                               | Triclinic                                |
| Space group                                                       | $P2_1$                                   | $P\overline{1}$                          |
| a/Å                                                               | 11.0169(8)                               | 10.4144(6)                               |
| b/Å                                                               | 7.8226(5)                                | 10.4124(6)                               |
| c/Å                                                               | 13.1321(9)                               | 27.457(2)                                |
| α/deg                                                             | 90.0                                     | 81.120(1)                                |
| β/deg                                                             | 102.3290(10)                             | 80.692(1)                                |
| γ/deg                                                             | 90.0                                     | 71.093(1)                                |
| $V/\text{Å}^3$                                                    | 1105.63(13)                              | 2763.0(3)                                |
| $\overline{Z}$                                                    | 2                                        | 4                                        |
| $d_{\rm calc}/{\rm g~cm^{-3}}$                                    | 1.448                                    | 1.414                                    |
| Absorption coefficient/mm <sup>-1</sup>                           | 1.328                                    | 1.075                                    |
| F(000)                                                            | 504                                      | 1224                                     |
| Radiation                                                         | Μο-Κα                                    | Μο-Κα                                    |
| λ/Å                                                               | 0.71073                                  | 0.71073                                  |
| Monochromator                                                     | Graphite                                 | Graphite                                 |
| $\theta/\deg$                                                     | 1.59—25.00                               | 2.08-25.00                               |
| Total number of reflections                                       | 9069                                     | 22799                                    |
| Number of independent reflections with $R(I > 2\sigma(I))$        | 3864                                     | 9737                                     |
| $R_1$                                                             | 0.0390                                   | 0.0384                                   |
| $wR_2$                                                            | 0.0749                                   | 0.0634                                   |
| Parameter of absolute structure                                   | 0.06(2)                                  | _                                        |
| R <sub>int</sub>                                                  | 0.0351                                   | 0.0425                                   |
| Number of refined parameters                                      | 273                                      | 703                                      |
| Weighing scheme                                                   | $w = 1/[\sigma^2(F_0^2) + (0.0305P)^2],$ | $w = 1/[\sigma^2(F_0^2) + (0.0190P)^2],$ |
|                                                                   | where $P = (F_0^2 + 2F_c^2)/3$           | where $P = (F_0^2 + 2F_c^2)/3$           |
| GOOF (full-matrix least-squares method against $F^2$ )            | 1.033                                    | 0.829                                    |
| Residual electron density/ $e^{A^{-3}}$ , $\rho_{min}/\rho_{max}$ | -0.183/0.478                             | -0.226/0.379                             |

ric isomer, most likely, with *cis*-oriented ferrocene groups, <sup>14,15</sup> and compounds 4 and 8 exist as mixtures of two diastereomeric forms 4a,b and 8a,b, respectively, in a ratio of ~3:1 (see Experimental). Diastereomeric heptanones 4a and 4b were separated by preparative TLC on SiO<sub>2</sub>. The spatial structure of isomer 4a was established by X-ray diffraction analysis of a single crystal isolated by crystallization from hexane (see Tables 1 and 2, Fig. 2). It follows from the X-ray diffraction data that compound 4a has a structure of 4R,5S-diferrocenylheptan-3-one. By analogy, we ascribed the *erythro*-configuration to compound 8a. Spectral identification of ketones 4a,b and 8a,b was not difficult, because positions of all signals in the <sup>1</sup>H and <sup>13</sup>C NMR spectra, their multiplicities, and integral intensities differ distinctly.

Bright violet compounds **5** and **9** were isolated in insignificant amounts (~6%) as one diastereomeric form. Their structures also follow from the data of <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy. For instance, the <sup>1</sup>H NMR spectra of compounds **5** and **9** contain signals of four unsubstituted cyclopentadienyl ferrocene rings along with the corresponding number of signals of protons of the substi-

tuted cyclopentadienyl rings, signals of the methyl (in 5) and methylene (in 9) groups, and one signal from each methine proton. Each  $^{13}$ C NMR spectrum exhibits four signals of quaternary C atoms of the ferrocene fragments of molecules 5 and 9, two signals of C atoms of the carbonyl group, and the corresponding number of signals of the quaternary C and  $C_{ipso}$  atoms. The mass spectra of compounds 5 and 9 contain peaks of molecular ions with m/z 874 and 936, respectively, which also indicates their dimeric nature and confirms the structure proposed.

The structure of compound 10 was determined from the data of mass spectrometry, IR spectroscopy, and <sup>1</sup>H and <sup>13</sup>C spectroscopy. The molecule contains the carbonyl and hydroxyl groups, two ferrocene substituents, *ortho*-disubstituted phenyl fragment, and methylene and methine groups.

Thus, the results obtained show that the reaction of 2,3-diferrocenylcyclopropenone 1 with organomagnesium compounds includes three main processes: (1) with retention of the small three-membered ring, (2) with nucleophilic opening of the cyclopropenone ring, and

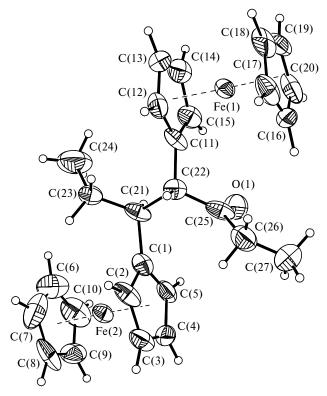
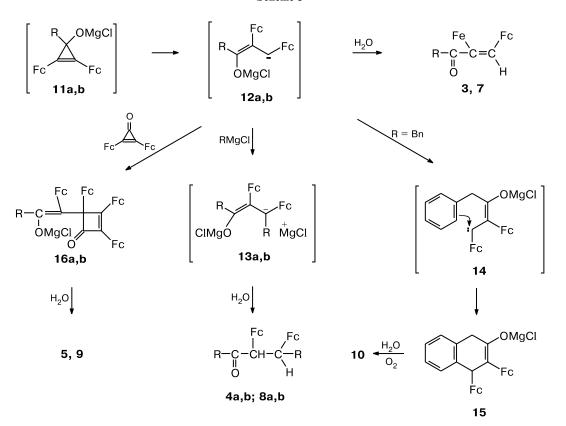



Fig. 2. Molecular structure of R,S-4,5-diferrocenylheptan-3-one (4a).

(3) with subsequent ring closure of cyclopropenone related to ring extension and formation of triferrocenyl-substituted cyclobutenone structures. The second process is prevailing.


3,3-Diethyl- and 3,3-dibenzyl-1,2-diferrocenylcyclopropenes 2 and 6 are formed, most likely, by the interaction of intermediate magnesium alkoxides 11a,b with the second RMgCl molecule (Scheme 4).

## Scheme 4

R = Et (2, 11a); Bn (6, 11b)

Similar processes, resulting in the complete replacement of the carbonyl group by hydrocarbon radicals, have

## Scheme 5



been described previously for the reactions of ferrocenyl ketones with alkylmagnesium iodides. 16,17

Diferrocenyl ketones 3, 4a,b, 7, and 8a,b were evidently formed due to the small ring closure in 11a,b followed by the transformation into diferrocenylvinyl carbenoid intermediates 12a,b. The latter add the second RMgCl molecule and are transformed into vinyl anions 13a,b (Scheme 5).

The intramolecular alkylation of the phenyl fragment of carbenoid 14 affords enolate 15. The insertion of carbenoid 12a,b at one of the σ-bonds of the starting cyclopropenone 1 affords enoxide 16a,b. The treatment of the reaction mixture with water transforms intermediates 12a,b, 13a,b, and enolates 15 (with simultaneous oxidation by air oxygen) and 16a,b into target compounds 3, 4a,b, 5, 7, 8a,b, 9, and 10.

The scheme proposed is favored by the isolation of deuterated ketones **3-D** and **4a,b-D** upon decomposition of the reaction mixture of diferrocenylcyclopropenone and EtMgCl with heavy water  $D_2O$  (Scheme 6).

## Scheme 6

The deuterium content in position 4 of saturated ketone **4a,b-D** decreased, most probably, due to isotope exchange during chromatography on a column with Al<sub>2</sub>O<sub>3</sub>.

## **Experimental**

Solvents were dried by standard procedures and distilled before use. Fixed-bed  ${\rm SiO_2}$  plates and  ${\rm Al_2O_3}$  (activity grade III according to Brockmann) were used for chromatography.  $^1{\rm H}$  and  $^{13}{\rm C}$  NMR spectra were recorded on a Varian Unity Inova spectrometer (300 and 75 MHz, respectively) for solutions in CDCl<sub>3</sub> using Me<sub>4</sub>Si as internal standard.

IR spectra were recorded on a Specord IR-75 spectrometer (KBr pellets). Molecular weights were determined on a Varian-MAT CH-6 mass spectrometer (EI, 70 eV) .

The following reagents available from Aldrich were used: ferrocene, 98%; tetrachlorocyclopropene, 98%; aluminum chloride 99.99%; ethylmagnesium chloride, 2.0 *M* solution in Et<sub>2</sub>O; and benzylmagnesium chloride, 1.0 *M* solution in Et<sub>2</sub>O.

**2,3-Diferrocenylcyclopropenone** (1).  $AlCl_3$  (0.67 g, 0.005 mol) was added by portions with stirring to a solution of

ferrocene (5.6 g, 0.03 mol) and tetrachlorocyclopropene (3.6 g, 0.02 mol) in anhydrous  $CH_2Cl_2$  (200 mL). Stirring was continued for 1 h at 20 °C, and then the mixture was poured in a cold water (200 mL). The organic layer was separated, washed with water (2×50 mL), and dried with MgSO<sub>4</sub>. After the solvent was distilled off *in vacuo*, the residue was chromatographed on  $Al_2O_3$  using a hexane— $CH_2Cl_2$  (3 : 1) mixture as eluant. Compound 1 was obtained as orange crystals in 92% yield (5.8 g), m.p. 182—183 °C (*cf.* Ref. 11: m.p. 181 °C (with decomp.)). Found (%): C, 65.71; H, 4.09; Fe, 26.54.  $C_{23}H_{18}Fe_2O$ . Calculated (%): C, 65.58; H, 4.28; Fe, 26.36. IR,  $v/cm^{-1}$ : 729, 821, 850, 887, 1003, 1100, 1109, 1480, 1602, 1825, 1850, 2917, 3100. <sup>1</sup>H NMR,  $\delta$ : 4.25 (s, 10 H, 2  $C_5H_5$ ); 4.58, 4.84 (both m, 4 H each,  $C_5H_4$ ). <sup>13</sup>C NMR,  $\delta$ : 65.16 (2  $C_{ipso}Fc$ ); 70.0 (2  $C_5H_5$ ); 70.9, 71.93 (2  $C_5H_4$ ); 144.9 (2 C); 152.3 (C=O).

**Reaction of cyclopropenone 1 with EtMgCl.** A 2 M solution of EtMgCl in Et<sub>2</sub>O (8 mL, 16 mmol) was added dropwise to a solution of compound 1 (0.84 g, 2 mmol) in anhydrous benzene (100 mL). The mixture was stirred for 3 h at 20 °C, and then water (100 mL) was added. The organic layer was separated and washed with water, and benzene was distilled off *in vacuo*. The residue was chromatographed on a column with  $Al_2O_3$  using a hexane—diethyl ether (3:1) mixture as eluant. Products 2–5 were isolated.

**1,2-Diferrocenyl-3,3-diethylcyclopropene (2),** 22% yield (0.20 g), orange crystals, m.p. 168—169 °C. Found (%): C, 69.74; H, 6.21; Fe, 23.87.  $C_{27}H_{28}Fe_2$ . Calculated (%): C, 69.86; H, 6.08; Fe, 24.06. IR,  $v/cm^{-1}$ : 721, 824, 1004, 1120, 1267, 1464, 1609, 1643, 2859, 2920, 3095. <sup>1</sup>H NMR,  $\delta$ : 0.98 (t, 6 H, 2 Me, J = 7.5 Hz); 1.70 (q, 4 H, 2 CH<sub>2</sub>, J = 7.5 Hz); 4.15 (s, 10 H, 2  $C_5H_5$ ); 4.33, 4.46 (both m, 4 H each,  $C_5H_4$ ). <sup>13</sup>C NMR,  $\delta$ : 12.5 (2 Me); 29.5 (2 CH<sub>2</sub>); 32.2 (C); 68.6, 68.9 (2  $C_5H_4$ ); 69.3 (2  $C_5H_5$ ); 75.2 (2  $C_{ipso}Fc$ ); 117.0 (2 C). MS, m/z 464 [M]<sup>+</sup>.

*cis*-1,2-Diferrocenylpent-1-en-3-one (3), 5% yield (0.046 g), red powder, m.p. 146—147 °C. Found (%): C, 66.69; H, 5.22; Fe, 24.89.  $C_{25}H_{24}Fe_2O$ . Calculated (%): C, 66.41; H, 5.35; Fe, 24.70. IR, ν/cm<sup>-1</sup>: 812, 1009, 1110, 1276, 1484, 1641, 1668, 1723, 2859, 2920, 3095. <sup>1</sup>H NMR, δ: 1.21 (t, 3 H, Me, J = 7.0 Hz); 3.48 (q, 2 H, CH<sub>2</sub>, J = 7.0 Hz); 4.11, 4.13, 4.23, 4.31, 4.37, 4.44 (all m, 2 H each,  $C_5H_4$ ); 6.72 (s, 1 H, CH=). <sup>13</sup>C NMR, δ: 14.6 (CH<sub>3</sub>); 39.3 (CH<sub>2</sub>); 67.8, 69.9, 70.8, 71.0 (2  $C_5H_4$ ); 69.1, 69.7 (2  $C_5H_5$ ); 78.4, 78.7 (2  $C_{ipso}Fc$ ); 136.0 (C); 136.6 (CH=); 198.4 (C=O). MS, m/z 453 [M]<sup>+</sup>.

**4,5-Diferrocenylheptan-3-one (4),** 50% yield (0.45 g), orange oil, a mixture of two isomers **4a** and **4b** in a ratio of  $\sim$ 3 : 1 (according to the data of <sup>1</sup>H NMR spectroscopy). The isomers were separated by TLC on fixed-bed SiO<sub>2</sub> plates (hexane—diethyl ether (4 : 1)).

Compound 4a, 30% yield (0.27 g),  $R_f$  0.68, orange crystals, m.p. 176—177 °C. Found (%): C, 67.41; H, 6.09; Fe, 23.31.  $C_{27}H_{30}Fe_2O$ . Calculated (%): C, 67.25; H, 6.27; Fe, 23.16. IR,  $v/cm^{-1}$ : 762, 815, 998, 1102, 1145, 1250, 1435, 1520, 1709, 2931, 3089. <sup>1</sup>H NMR,  $\delta$ : 0.75 (t, 3 H, Me, J = 7.5 Hz): 0.92 (t, 3 H, Me, J = 7.2 Hz); 1.80 (m, 2 H, CH<sub>2</sub>); 2.41 (q, 2 H, CH<sub>2</sub>, J = 7.2 Hz); 2.46 (m, 1 H, CH); 3.22 (d, 1 H, CH, J = 9.0 Hz); 3.85 (m, 1 H,  $C_5H_4$ ); 3.92 (m, 2 H,  $C_5H_4$ ); 3.99 (s, 5 H,  $C_5H_5$ ); 4.02 (m, 1 H,  $C_5H_4$ ); 4.06 (s, 5 H,  $C_5H_5$ ); 4.09 (m, 2 H,  $C_5H_4$ ); 4.16, 4.36 (both m, 1 H each,  $C_5H_4$ ). <sup>13</sup>C NMR,  $\delta$ : 6.9, 12.5 (2 Me); 26.5, 38.3 (2 CH<sub>2</sub>); 46.0, 58.4 (2 CH); 66.3, 66.6, 66.9, 67.5, 68.3, 68.6, 69.3, 69.7 (2  $C_5H_4$ ); 68.4, 68.4 (2  $C_5H_5$ ); 84.1, 93.5 (2  $C_{ipso}Fc$ ); 210.95 (C=O). MS, m/z 482 [M]<sup>+</sup>.

Compound **4b**, 10% yield, (0.10 g), orange powder, m.p. 164-165 °C. IR,  $v/cm^{-1}$ : 768, 824, 1004, 1100, 1125, 1231, 1425, 1512, 1689, 2919, 3086. ¹H NMR,  $\delta$ : 0.94 (t, 3 H, Me, J=7.3 Hz); 1.05 (t, 3 H, Me, J=7.5 Hz); 1.88 (m, 2 H, CH<sub>2</sub>); 2.45 (q, 2 H, CH<sub>2</sub>, J=7.5 Hz); 2.49 (m, 1 H, CH); 3.56 (d, 1 H, CH, J=5.1 Hz); 3.67, 3.76, 3.79, 3.94 (all m, 1 H each,  $C_5H_4$ ); 3.97, 4.04 (both s, 5 H each,  $C_5H_5$ ); 4.03, 4.08 (both, 2 H each,  $C_5H_4$ ).  $^{13}$ C NMR,  $\delta$ : 8.4, 13.6 (2 Me); 24.7, 37.3 (2 CH<sub>2</sub>); 46.1, 56.6 (2 CH); 66.7, 67.0, 68.0, 68.7 (2 C); 68.9, 69.6, 69.7 (2  $C_5H_4$ ); 68.4, 68.5 (2  $C_5H_5$ ); 91.3, 94.0 (2  $C_{ipso}$ Fc); 210.1 (C=O). MS, m/z 482 [M]<sup>+</sup>.

**4-(1-Ferrocenyl-2-oxobutyl)-2,3,4-triferrocenylcyclobutenone (5),** 6% yield (6%), violet powder, m.p. 289–292 °C (with decomp.). Found (%): C, 66.19; H, 4.71; Fe, 25.77.  $C_{48}H_{42}Fe_4O_2$ . Calculated (%): C, 65.94; H, 4.84; Fe, 25.56. <sup>1</sup>H NMR ( $\delta$ : 1.28 (t, 3 H, Me, J = 7.2 Hz); 2.92 (q, 2 H, CH<sub>2</sub>, J = 7.2 Hz); 3.48 (s, 1 H, CH); 3.92, 3.96 (both m, 1 H each,  $C_5H_4$ ); 4.06 (s, 5 H,  $C_5H_5$ ); 4.10 (m, 2 H,  $C_5H_4$ ); 4.11, 4.18, 4.23 (all s, 5 H each,  $C_5H_5$ ); 4.25, 4.36, 4.41, 4.41 (all m, 2 H each,  $C_5H_4$ ); 4.46 (m, 1 H,  $C_5H_4$ ); 4.51 (m, 2 H,  $C_5H_4$ ); 4.91 (m, 1 H,  $C_5H_4$ ). <sup>13</sup>C NMR,  $\delta$ : 16.5 (CH<sub>3</sub>); 48.0 (CH<sub>2</sub>); 58.9 (CH); 66.9, 67.4, 67.4 (2 C); 67.5, 68.4, 68.6, 68.9 (2 C); 69.1, 69.2, 69.5, 70.5, 70.6, 70.9, 71.5 (4  $C_5H_4$ ); 69.0, 69.2, 69.4, 69.9 (4  $C_5H_5$ ); 73.0, 73.3, 80.3, 89.7 (4  $C_{ipso}Fc$ ); 140.1, 167.0, 185.7 (3 C); 198.9, 206.2 (2 C=O). MS, m/z 874 [M]<sup>+</sup>.

Decomposition of the reaction mixture with  $D_2O$ . The reaction was carried out similarly to the procedure described above, and  $D_2O$  (100 mL) was added to decompose the reaction mixture. Compounds 2-5 were obtained after chromatography on a column with  $Al_2O_3$ , hexane—diethyl ether (3 : 1) mixture as eluant).

<u>Cyclopropene 2</u>, 20% yield, 0.18 g, orange crystals, m.p. 169 °C.

Compound 3-D, 5.5% yield (0.05 g), red powder, m.p.  $146 \,^{\circ}$ C.  $^{1}$ H NMR,  $\delta$ : 1.20 (t, 3 H, Me, J = 7.0 Hz); 3.46 (q, 2 H, CH<sub>2</sub>, J = 7.0 Hz); 4.10, 4.13 (both s, 5 H each, C<sub>5</sub>H<sub>5</sub>); 4.24, 4.32, 4.38, 4.43 (all m, 2 H each, C<sub>5</sub>H<sub>4</sub>); 6.72 (s, 0.16 H, CH=). MS, m/z 454 [M]<sup>+</sup>.

<u>Compounds 4a,b-D</u>, 56% yield (0.51 g), orange oil, mixture of isomers 4a-D and 4b-D in a ratio of  $\sim 3:1$  (according to the data of <sup>1</sup>H NMR spectroscopy). MS, m/z: 483, 484 [M]<sup>+</sup>.

Compound **4a-D**. <sup>1</sup>H NMR,  $\delta$ : 0.76 (t, 3 H, Me, J = 7.3 Hz); 0.92 (t, 3 H, Me, J = 7.2 Hz); 1.81 (q, 2 H, CH<sub>2</sub>, J = 7.3 Hz); 2.41 (q, 2 H, CH<sub>2</sub>, J = 7.2 Hz); 2.46 (m, 0.13 H, CH); 3.22 (s, 0.6 H, CH); 3.85 (m, 1 H, C<sub>5</sub>H<sub>4</sub>); 3.92 (m, 2 H, C<sub>5</sub>H<sub>4</sub>); 3.99 (s, 5 H, C<sub>5</sub>H<sub>5</sub>); 4.02 (m, 1 H, C<sub>5</sub>H<sub>4</sub>); 4.06 (s, 5 H, C<sub>5</sub>H<sub>5</sub>); 4.09 (m, 2 H, C<sub>5</sub>H<sub>4</sub>); 4.16, 4.36 (both m, 1 H each, C<sub>5</sub>H<sub>4</sub>).

Compound **4b-D**. <sup>1</sup>H NMR,  $\delta$ : 0.95 (t, 3 H, Me, J = 7.2 Hz); 1.04 (t, 3 H, Me, J = 7.5 Hz); 1.89 (q, 2 H, CH<sub>2</sub>, J = 7.2 Hz); 2.44 (q, 2 H, CH<sub>2</sub>, J = 7.5 Hz); 2.49 (m, 0.12 H, CH); 3.56 (s, 0.55 H, CH); 3.67, 3.76, 3.79, 3.94 (all m, 1 H each, C<sub>5</sub>H<sub>4</sub>); 3.97 (s, 5 H, C<sub>5</sub>H<sub>5</sub>); 4.03 (m, 2 H, C<sub>5</sub>H<sub>4</sub>); 4.04 (s, 5 H, C<sub>5</sub>H<sub>5</sub>); 4.07 (m, 2 H, C<sub>5</sub>H<sub>4</sub>).

<u>Compound 5</u>, 5% yield (0.05 g), violet powder, m.p.  $289-291 \,^{\circ}\text{C}$  (with decomp.). MS,  $m/z \, 874 \, [\text{M}]^{+}$ .

**Reaction of cyclopropenone 1 with BnMgBr.** Compounds **6–10** were synthesized similarly from compound **1** (0.84 g, 2 mmol) in anhydrous benzene (100 mL) and a 1 M solution of BnMgCl in Et<sub>2</sub>O (16.0 mL) after the respective treatment and chromatography on  $Al_2O_3$  (hexane—diethyl ether (2 : 1) as eluant).

**3,3-Dibenzyl-1,2-diferrocenylcyclopropene (6),** 20% yield (0.24 g), orange crystals, m.p. 112—113 °C. Found (%): C, 75.39; H, 5.67; Fe, 19.20.  $C_{37}H_{32}Fe_2$ . Calculated (%): C, 75.53; H, 5.48; Fe, 18.99. IR,  $v/cm^{-1}$ : 718, 821, 1003, 1105, 1258, 1470, 1589, 1623, 1645, 2883, 2936, 3085. <sup>1</sup>H NMR,  $\delta$ : 2.96 (s, 4 H, 2 CH<sub>2</sub>); 4.10 (s, 10 H, 2 C<sub>5</sub>H<sub>5</sub>); 4.33, 4.39 (both m, 4 H each,  $C_5H_4$ ); 7.15—7.29 (m, 10 H, 2 C<sub>6</sub>H<sub>5</sub>). <sup>13</sup>C NMR,  $\delta$ : 33.3 (C); 43.9 (2 CH<sub>2</sub>); 68.9, 69.0 (2 C<sub>5</sub>H<sub>4</sub>); 69.3 (2 C<sub>5</sub>H<sub>5</sub>); 74.4 (2 C<sub>ipso</sub>Fc); 117.7 (2 C); 125.7, 127.9, 129.9 (2 C<sub>6</sub>H<sub>5</sub>); 140.9 (2 C<sub>ipso</sub>). MS, m/z 588 [M]<sup>+</sup>.

*cis*-4-Phenyl-1,2-diferrocenylbut-1-en-3-one (7), 6% yield (0.077 g), red powder, m.p. 161-162 °C. Found (%): C, 69.88; H, 5.28; Fe, 21.93.  $C_{30}H_{26}Fe_{2}O$ . Calculated (%): C, 70.07; H, 5.10; Fe, 21.72. IR,  $v/cm^{-1}$ : 815, 1003, 1106, 1265, 1467, 1620, 1648, 1665, 1715, 2853, 2918, 3095. <sup>1</sup>H NMR,  $\delta$ : 3.01 (s, 2 H, CH<sub>2</sub>); 4.08, 4.15 (both s, 5 H each,  $C_{5}H_{5}$ ); 4.28, 4.33, 4.37, 4.49 (all m, 2 H each,  $C_{5}H_{4}$ ); 6.86 (s, 1 H, CH=). <sup>13</sup>C NMR,  $\delta$ : 42.3 (CH<sub>2</sub>); 67.8, 68.8, 70.5, 70.6 (2  $C_{5}H_{4}$ ); 69.3, 69.7 (2  $C_{5}H_{5}$ ); 81.2, 82.6 (2  $C_{ipso}Fc$ ); 126.5, 128.5, 130.9 ( $C_{6}H_{5}$ ); 137.2 (C); 138.2 (CH=); 140.6 ( $C_{inso}$ ); 199.1 (C=O). MS, m/z 514 [M]<sup>+</sup>.

**1,5-Diphenyl-3,4-diferrocenylpent-3-en-2-one (8),** 45% yield (0.54 g), orange powder, m.p. 183-188 °C, mixture of two diastereomers **8a** and **8b** in a ratio of  $\sim 3:1$  (data of the <sup>1</sup>H NMR spectroscopy). Found (%): C, 73.41; H, 5.39; Fe, 18.31. C<sub>37</sub>H<sub>34</sub>Fe<sub>2</sub>O. Calculated (%): C, 73.29; H, 5.65; Fe, 18.42. IR, v/cm<sup>-1</sup>: 767, 823, 1021, 1110, 1233, 1448, 1525, 1536, 1654, 1710, 2921, 3098. MS, m/z 606 [M]<sup>+</sup>.

Compound 8a. <sup>1</sup>H NMR,  $\delta$ : 2.61 (m, 1 H, CH); 3.15 (d, 2 H, CH<sub>2</sub>, J = 6.3 Hz); 3.23 (s, 2 H, CH<sub>2</sub>), 3.54 (d, 1 H, CH, J = 8.4 Hz); 4.05 (m, 1 H, C<sub>5</sub>H<sub>4</sub>); 4.09 (s, 5 H, C<sub>5</sub>H<sub>5</sub>); 4.12 (m, 2 H, C<sub>5</sub>H<sub>4</sub>); 4.14 (s, 5 H, C<sub>5</sub>H<sub>5</sub>); 4.15 (m, 1 H, C<sub>5</sub>H<sub>4</sub>); 4.18 (m, 2 H, C<sub>5</sub>H<sub>4</sub>); 4.21, 4.46 (both m, 1 H each, C<sub>5</sub>H<sub>4</sub>); 6.89—7.54 (m, 10 H, 2 C<sub>6</sub>H<sub>5</sub>).

Compound 8b. <sup>1</sup>H NMR,  $\delta$ : 2.68 (m, 1 H, CH); 3.10 (d, 2 H, CH<sub>2</sub>, J = 6.6 Hz); 3.30 (s, 2 H, CH<sub>2</sub>); 3.41 (d, 1 H, CH, J = 8.7 Hz); 3.95 (m, 1 H, C<sub>5</sub>H<sub>4</sub>); 4.00 (s, 5 H, C<sub>5</sub>H<sub>5</sub>); 4.02 (m, 2 H, C<sub>5</sub>H<sub>4</sub>); 4.10 (s, 5 H, C<sub>5</sub>H<sub>5</sub>); 4.13 (m, 1 H, C<sub>5</sub>H<sub>4</sub>); 4.15 (m, 2 H, C<sub>5</sub>H<sub>4</sub>); 4.17, 4.32 (both m, 1 H each, C<sub>5</sub>H<sub>4</sub>); 7.04—7.63 (m, 10 H, 2 C<sub>6</sub>H<sub>5</sub>).

**4-(3-Phenyl-1-ferrocenyl-2-oxopropyl)-2,3,4-triferrocenyl-cyclobutenone (9),** 6% yield (0.053 g), violet powder, m.p. 312—315 °C (with decomp.). Found (%): C, 68.21; H, 4.91; Fe, 23.65.  $C_{53}H_{44}Fe_4O_2$ . Calculated (%): C, 67.98; H, 4.74; Fe, 23.86. <sup>1</sup>H NMR, δ: 3.23 (s, 2 H, CH<sub>2</sub>); 3.52 (s, 1 H, CH); 4.02, 4.07 (both m, 1 H each,  $C_5H_4$ ); 4.09 (s, 5 H,  $C_5H_5$ ); 4.13 (m, 2 H,  $C_5H_4$ ); 4.14, 4.26 (both s, 5 H each,  $C_5H_5$ ); 4.29 (m, 2 H,  $C_5H_4$ ); 4.39 (s, 5 H,  $C_5H_5$ ); 4.40, 4.52, 4.54 (all m, 2 H each,  $C_5H_4$ ); 4.56 (m, 1 H,  $C_5H_4$ ); 4.61 (m, 2 H,  $C_5H_4$ ); 4.99 (m, 1 H,  $C_5H_4$ ); 7.09—7.45 (m, 5 H,  $C_6H_5$ ). <sup>13</sup>C NMR, δ: 47.4 (CH<sub>2</sub>); 57.7 (CH); 67.2, 67.4, 67.6 (2 C); 67.7, 68.7, 68.8, 69.0 (2 C); 69.2, 69.3, 69.6, 70.5, 70.6, 71.0, 71.6 (4  $C_5H_4$ ); 69.1, 69.2, 69.5, 69.9 (4  $C_5H_5$ ); 73.3, 73.5, 80.6, 89.9 (4  $C_{ipso}$ Fc); 128.3, 129.5, 134.3 ( $C_6H_5$ ); 139.2 ( $C_{ipso}$ ); 140.3, 159.9, 175.6 (3 C); 194.3, 209.1 (2 C=O). MS, m/z 936 [M]<sup>+</sup>.

**2-Hydroxy-3-oxo-1,2-diferrocenyl-1,2,3,4-tetrahydro-naphthalene (10),** 10% yield (0.10 g), orange powder, m.p. 159—160 °C Found (%): C, 67.78; H, 5.13; Fe, 21.29.  $C_{30}H_{26}Fe_2O_2$ . Calculated (%): C, 67.95; H, 4.94; Fe, 21.06. IR,  $v/cm^{-1}$ : 823, 1013, 1100, 1256, 1464, 1625, 1661, 1718, 2879, 2905, 3095, 3368—3459. <sup>1</sup>H NMR,  $\delta$ : 3.14 (s, 2 H, CH<sub>2</sub>); 3. 63 (s, 1 H, CH); 4.08 (s, 5 H,  $C_5H_5$ ); 4.12 (m, 2 H,  $C_5H_4$ ); 4.21 (s,

5 H,  $C_5H_5$ ); 4.23, 4.27, 4.34 (all m, 2 H each,  $C_5H_4$ ); 5.03 (br.s, 1 H, OH); 6.98—7.35 (m, 4 H,  $C_6H_4$ ). <sup>13</sup>C NMR, 8: 41.1 (CH<sub>2</sub>); 67.5, 68.9, 70.4, 70.5 (2  $C_5H_4$ ); 69.3, 69.7 (2  $C_5H_5$ ); 70.2 (C); 78.9, 80.7 (2  $C_{ipso}F_c$ ); 127.8, 129.3, 129.8, 134.3 ( $C_6H_4$ ); 136.5, 144.8 (2  $C_{ipso}$ ); 210.1 (C=O). MS, m/z 530 [M]<sup>+</sup>.

X-ray diffraction analysis of compounds 4a and 6. Unit cell parameters and intensities of reflections were measured on a Bruker Smart Apex CCD diffractometer at 291 K. The structures were solved by the direct method and refined by the least-squares method in the full-matrix anisotropic approximation for non-hydrogen atoms. All H atoms were revealed from the difference series and refined isotropically. The coordinates of atoms were deposited with the Cambridge Structural Database. The crystallographic data, parameters of X-ray diffraction experiment, and refinement parameters are presented in Table 2.

The authors thank O. S. Yañez Muñoz, M. L. Velasco, J. Perez, H. Rios, and R. Patiño for measuring mass, IR, and NMR spectra.

This work was financially supported by the National Council on Science and Technology (CONACyT (Mexico), Grant 34862-E).

## References

- A. Greenberg, R. P. T. Tomkins, M. Dobrovolny, and J. F. Liebman, J. Am. Chem. Soc., 1983, 105, 6855
- P. H. M. Budzelaar, E. Kraka, D. Cremer, and P. v. R. Schleyer, J. Am. Chem. Soc., 1986, 108, 561.
- H. Dahn and M.-N. Ung-Truong, Helv. Chim. Acta, 1987, 70, 2130.

- 4. R. Breslow, R. Haynie, and J. Mirra, *J. Am. Chem. Soc.*, 1959, **81**, 247.
- 5. I. Agranat and S. Kohen, Bull. Chem. Soc. Jpn, 1974, 47, 723.
- H. Tsukada, H. Shimanouchi, and Y. Sasada, *Tetrahedron Lett.*, 1973, 2455.
- 7. Y. Veprek-Bilinski, K. Natasimhan, and A. S. Dreiding, *Helv. Chim. Acta*, 1978, **61**, 3018.
- 8. M. Takahashi, N. Inaba, H. Kirihara, and S. Watanabe, *Bull. Chem. Soc. Jpn*, 1978, **51**, 3312.
- 9. T. Eicher and M. Urban, Chem. Ber., 1980, 113, 408.
- 10. M. Takahashi and S. Watanabe, Chem. Lett., 1979, 1213.
- 11. I. Agranat, E. Aharon-Shalom, A. J. Fry, R. L. Krieger, and W. O. Krug, *Tetrahedron*, 1979, 35, 733.
- E. I. Klimova, T. Klimova Berestneva, L. Ruiz Ramirez, M. Martinez Garcia, C. Alvarez Toledano, P. G. Espinosa, and R. A. Toscano, *J. Organomet. Chem.*, 1997, 545-546, 191.
- E. I. Klimova, M. Martinez Garcia, T. Klimova, C. Alvarez Toledano, R. A. Toscano, R. Moreno Esparza, and L. Ruiz Ramirez, *J. Organomet. Chem.*, 1998, 566, 175.
- 14. W. G. Young, S. U. Sharman, and S. Winstein, *J. Am. Chem. Soc.*, 1960, **82**, 1376.
- E. I. Klimova, T. Klimova Berestneva, L. Ruiz Ramirez,
   A. Cinquantini, M. Corsini, P. Zanello, S. Hernandez
   Ortega, and M. Martinez Garcia, Eur. J. Org. Chem.,
   2003, 4265.
- D. B. Werz, R. Gleiter, and F. Rominger, Eur. J. Org. Chem., 2003, 151
- 17. G. A. Olah and M. Mayer, J. Am. Chem. Soc., 1975, 97, 1539.

Received June 23, 2003; in revised form October 20, 2003